

Attachment E – Notice of Intent

**WATER QUALITY ORDER NO. 2013-0002-DWQ
GENERAL PERMIT NO. CAG990005**

**STATEWIDE GENERAL NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM
(NPDES) PERMIT FOR RESIDUAL AQUATIC PESTICIDE DISCHARGES TO WATERS OF
THE UNITED STATES FROM ALGAE AND AQUATIC WEED CONTROL APPLICATIONS**

I. NOTICE OF INTENT STATUS (see Instructions)

Mark only one item	A. <input checked="" type="checkbox"/> New Applicator	B. Change of Information: WDID# _____
	C. <input type="checkbox"/> Change of ownership or responsibility: WDID# _____	

II. DISCHARGER INFORMATION

A. Name County of Sutter			
B. Mailing Address 1130 Civic Center Blvd.			
C. City Yuba City	D. County Sutter	E. State CA	F. Zip 95993
G. Contact Person Neal Hay	H. E-mail address <u>NHay@co.sutter.ca.us</u>	I. Title Director	J. Phone 530-822-7400

III. BILLING ADDRESS (Enter Information only if different from Section II above)

A. Name			
B. Mailing Address			
C. City	D. County	E. State	F. Zip
G. E-mail address	H. Title	I. Phone	

IV. RECEIVING WATER INFORMATION

A. Algaecide and aquatic herbicides are used to treat (check all that apply):

1. Canals, ditches, or other constructed conveyance facilities owned and controlled by Discharger.
Name of the conveyance system: _____
2. Canals, ditches, or other constructed conveyance facilities owned and controlled by an entity other than the Discharger. See attached list of waterbodies.
Owner's name: _____
Name of the conveyance system: _____
3. Directly to river, lake, creek, stream, bay, ocean, etc.
Name of water body: See attached list of waterbodies _____

B. Regional Water Quality Control Board(s) where treatment areas are located
(REGION 1, 2, 3, 4, 5, 6, 7, 8, or 9): **Region 5**
(List all regions where algaecide and aquatic herbicide application is proposed.)

V. ALGAECIDE AND AQUATIC HERBICIDE APPLICATION INFORMATION

A. Target Organisms: **Algae, submersed, floating, and emergent aquatic vegetation**

B. Algaecide and Aquatic Herbicide Used: List Name and Active ingredients

2,4-D (Weedar® 64)	Penoxsulam (Galleon® SC)
Diquat Dibromide (Reward®)	Peroxyacetic Acid (GreenClean Liquid 5.0®)
Endothall (Cascade®)	Sodium Carbonate Peroxyhydrate (PAK®27)
Flumioxazin (Clipper®)	Triclopyr (Renovate®)
Fluridone (Sonar Genesis®)	
Glyphosate (Roundup Custom®)	
Hydrogen Peroxide/Dioxide (GreenClean Liquid 5.0®)	
Imazamox (Clearcast®)	
Imazapyr (Habitat®)	

C. Period of Application: Start Date: **January 1** End date: **December 31, for the life of the permit**

D. Types of Adjuvants Used: **"Aquatic" labeled adjuvants such as Liberate® and Competitor®**

VI. AQUATIC PESTICIDE APPLICATION PLAN

Has an Aquatic Pesticide Application Plan been prepared and is the applicator familiar with its contents?
 Yes No

If not, when will it be prepared? _____

VII. NOTIFICATION

Have potentially affected public and governmental agencies been notified? Yes No

VIII. FEE

Have you included payment of the filing fee (for first-time enrollees only) with this submittal?
 YES NO NA

GENERAL NPDES PERMIT FOR RESIDUAL
AQUATIC PESTICIDE DISCHARGES FROM
ALGAE AND AQUATIC WEED CONTROL APPLICATIONS

ORDER NO. 2013-0002-DWQ
NPDES NO. CAG990005

IX. CERTIFICATION

"I certify under penalty of law that this document and all attachments were prepared under my direction and supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment. Additionally, I certify that the provisions of the General Permit, including developing and implementing a monitoring program, will be complied with."

A. Printed Name: Neal Hay

B. Signature:

Date: 8/14/23

C. Title: Director, Sutter County Development Services

XI. FOR STATE WATER BOARD STAFF USE ONLY

WDID:	Date NOI Received:	Date NOI Processed:
Case Handler's Initial:	Fee Amount Received: \$	Check #:
<input type="checkbox"/> Lyris List Notification of Posting of APAP	Date _____	Confirmation Sent _____

IV. Receiving Water Information

A. Algaecide and aquatic herbicides are used to treat

1. Canals, ditches, or other constructed conveyance facilities owned and controlled by Discharger. Name of the conveyance system:
 - Sutter City Lateral
 - Interceptor Canal
 - Live Oak Canal
 - Various county maintained roadside ditches and drains
2. Canals, ditches, or other constructed conveyance facilities owned and controlled by an entity other than the Discharger.
 - RD 823
 - RD 777
3. Directly to river, lake, creek, stream, bay, ocean, etc.
Name of water body:
 - Snake and Lower Snake River
 - Morrison Slough
 - Live Oak Slough
 - Sand Creek
 - Little Blue Creek
 - Gilsizer Slough
 - Chandler Slough

County of Sutter

Aquatic Pesticide Application Plan (APAP)

For the

Statewide General National Pollutant Discharge Elimination System (NPDES) Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications

Water Quality Order No. 2013-0002-DWQ

General Permit # CAG990005

Prepared for:

County of Sutter
1130 Civic Center Blvd.

Yuba City, CA 95993

Contact: Jerod Rogers
(530) 682-3118

Prepared by:

Blankinship & Associates, Inc.
1615 5th Street, Suite A

Davis, CA 95616

Contact: Stephen Burkholder
(530) 757-0941

Submitted to:

State Water Resources Control Board
1001 I Street

Sacramento, CA 95814

Contact: Gurgagn Chand
(916) 341-5780

Aquatic Pesticide Application Plan

Certification

"I certify under penalty of law that this document and all attachments were prepared under my direct supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment".

Signed and Agreed:

Neal Hay
Professional Engineer (Civil) #55634
Director, Sutter County Development Services
County of Sutter

Stephen Burkholder
Senior Biologist
Pest Control Adviser # 153644
Blankinship & Associates, Inc.

Michael S. Blankinship
Professional Engineer (Civil) #64112
Pest Control Adviser # 75890
Blankinship & Associates, Inc.

Limitations

The services used to prepare this document were performed consistent with our agreement with the County of Sutter and were rendered in a manner consistent with generally accepted professional consulting principles and practices using the level of care and skill ordinarily exercised by other professional consultants under similar circumstances at the same time the services were performed. No warranty, express or implied, is included. This document is solely for the use of our client unless otherwise noted. Any use or reliance on this document by a third party is at such party's sole risk and such party agrees to indemnify and defend Blankinship & Associates.

County of Sutter

Aquatic Pesticide Application Plan

**Statewide General National Pollutant Discharge Elimination System (NPDES) Permit for
Residual Aquatic Pesticide Discharges to Waters of the United States from
Algae and Aquatic Weed Control Applications
Water Quality Order No. 2013-0002-DWQ**

General Permit # CAG990005

Table of Contents

Aquatic Pesticide Application Plan	1
Element 1: Description of the Water System	5
Element 2: Description of the Treatment Area	6
Element 3: Description of Weeds and Algae	6
Element 4: Algaecides and Aquatic Herbicides Used, Known Degradation Byproducts, Application Methods and Adjuvants	7
Element 5: Discussion of Factors Influencing Herbicide Use	9
Element 6: Gates and Control Structures	11
Element 7: State Implementation Policy (SIP) Section 5.3 Exception.....	12
Element 8: Description of Monitoring Program	12
8.1 Data Collection	12
8.2 Monitoring Locations and Frequency.....	18
8.3 Sample Collection	19
8.4 Field Measurements.....	19
8.5 Sample Preservation and Transportation.....	19
8.6 Sample Analysis	19
8.7 Reporting Procedures	20
8.8 Sampling Methods and Guidelines.....	22
8.9 Field Sampling Operations.....	24
8.10 Quality Assurance and Quality Control (QA/QC).....	26
Element 9: Procedures to Prevent Sample Contamination.....	29
Element 10: Description of BMPs	30
10.1 Measures to Prevent Spills and Spill Containment in the Event of a Spill.....	30
10.2 Measures to Ensure Appropriate Use Rate	30
10.3 The Discharger's plan in educating its staff and herbicide applicators on how to avoid any potential adverse effects from the herbicide applications	31
10.4 Application Coordination to Minimize Impact of Application on Water Users.....	31
10.5 Description of Measures to Prevent Fish Kills	32
Element 11: Examination of Possible Alternatives	32
11.1 Evaluation of Other Management Options	32
11.2 Using the Least Intrusive Method of Aquatic Herbicide Application	36
11.3 Applying a decision matrix concept to the choice of the most appropriate formulation.....	36
References	37

List of Tables

Table 1	Algaecides and Aquatic Herbicides That May Be Used
Table 2	Required Sample Analysis

List of Figures

Figure 1	County of Sutter Project Location Map
Figure 2	County of Sutter Water Conveyances Map
Figure 3	Aquatic Herbicide Application Log
Figure 4	Aquatic Herbicide Field Monitoring & Sampling Form

List of Abbreviations

AHAL	Aquatic Herbicide Application Log
APAP	Aquatic Pesticide Application Plan
BG	Background
BMPs	Best Management Practices
°C	Degrees Celsius
CEQA	California Environmental Quality Act
COC	Chain of Custody
CTR	California Toxics Rule
County	County of Sutter
DO	Dissolved Oxygen
DPR	California Department of Pesticide Regulation
Event	Event Monitoring
FB	Field Blank
FD	Field Duplicate
ft/sec	Feet per second
IPM	Integrated Pest Management
MAR	Managed Aquifer Recharge
MB	Method Blank
MRP	Monitoring and Reporting Program
MS	Matrix Spike
MSD	Matrix Spike Duplicates
NPDES	National Pollutant Discharge Elimination System
NOI	Notice of Intent
OSHA	California Occupational Safety and Health Administration
PCA	Pest Control Adviser
Permit	The Statewide General NPDES Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications
Policy	State Water Board Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California
Post	Post-event monitoring
PPE	Personal Protective Equipment
QAC	Qualified Applicator Certificate
QAL	Qualified Applicator License
QA/QC	Quality Assurance and Quality Control
%R	Percent Recovery
RPD	Relative Percent Difference
RWL	Receiving Water Limitation
RWMT	Receiving Water Monitoring Trigger
RWQCB	Regional Water Quality Control Board
SIP	State Implementation Policy
SWRCB	State Water Resources Control Board
USEPA	United States Environmental Protection Agency
WDID	Waste Discharge Identification
WOTUS	Waters of the United States

Aquatic Pesticide Application Plan

In March 2001, the State Water Resources Control Board (SWRCB) prepared Water Quality Order # 2001-12-DWQ which created Statewide General National Pollutant Discharge Elimination System (NPDES) Permit # CAG990003 for the discharges of aquatic herbicides to waters of the United States (WOTUS). The purpose of Order # 2001-12-DWQ was to minimize the areal extent and duration of adverse impacts to beneficial uses of water bodies treated with aquatic herbicides. The purpose of the general permit was to substantially reduce the potential discharger liability incurred for releasing water treated with aquatic herbicides into waters of the United States. The general permit expired January 31, 2004.

On May 20, 2004 the SWRCB adopted the statewide general NPDES Permit for Discharge of Aquatic Pesticides for Aquatic Weed Control in Waters of the United States #CAG 990005. Dischargers were required to have the general permit to perform aquatic herbicide applications. In May 2009, the general permit expired, but was administratively continued until November 30, 2013.

The Statewide General NPDES Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications (herein referred to as the "Permit") was adopted on March 5, 2013 and became available on December 1, 2013 (SWRCB 2013). The Permit expired November 30, 2018, and it has been administratively continued until a new permit is adopted. As such, the Permit is still active and enforceable. The Permit requires compliance with the following:

- The Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries in California, a.k.a. the State Implementation Policy, or SIP (SWRCB 2005)
- The California Toxics Rule (CTR)
- Applicable Regional Water Quality Control Board (RWQCB) Basin Plan Water Quality Objectives (RWQCB 2018-B)
- Permit-defined Receiving Water Limitations (RWLs) or Receiving Water Monitoring Triggers (RWMTs)

Coverage under the Permit is available to single dischargers and potentially to regional dischargers for releases of potential and/or actual pollutants to waters of the United States. Dischargers eligible for coverage under the Permit are public entities that conduct resource or pest management control measures, including local, state, and federal agencies responsible for control of algae, aquatic weeds, and other organisms that adversely impact operation and use of drinking water reservoirs, water conveyance facilities, irrigation canals, flood control channels, detention basins and/or natural water bodies.

The Permit does not cover indirect or non-point source discharges, whether from agricultural or other applications of pesticides to land, that may be conveyed in storm water or irrigation runoff. The Permit only covers algaecides and aquatic herbicides that are applied according to label directions and that are registered for use on aquatic sites by the California Department of Pesticide Regulation (DPR).

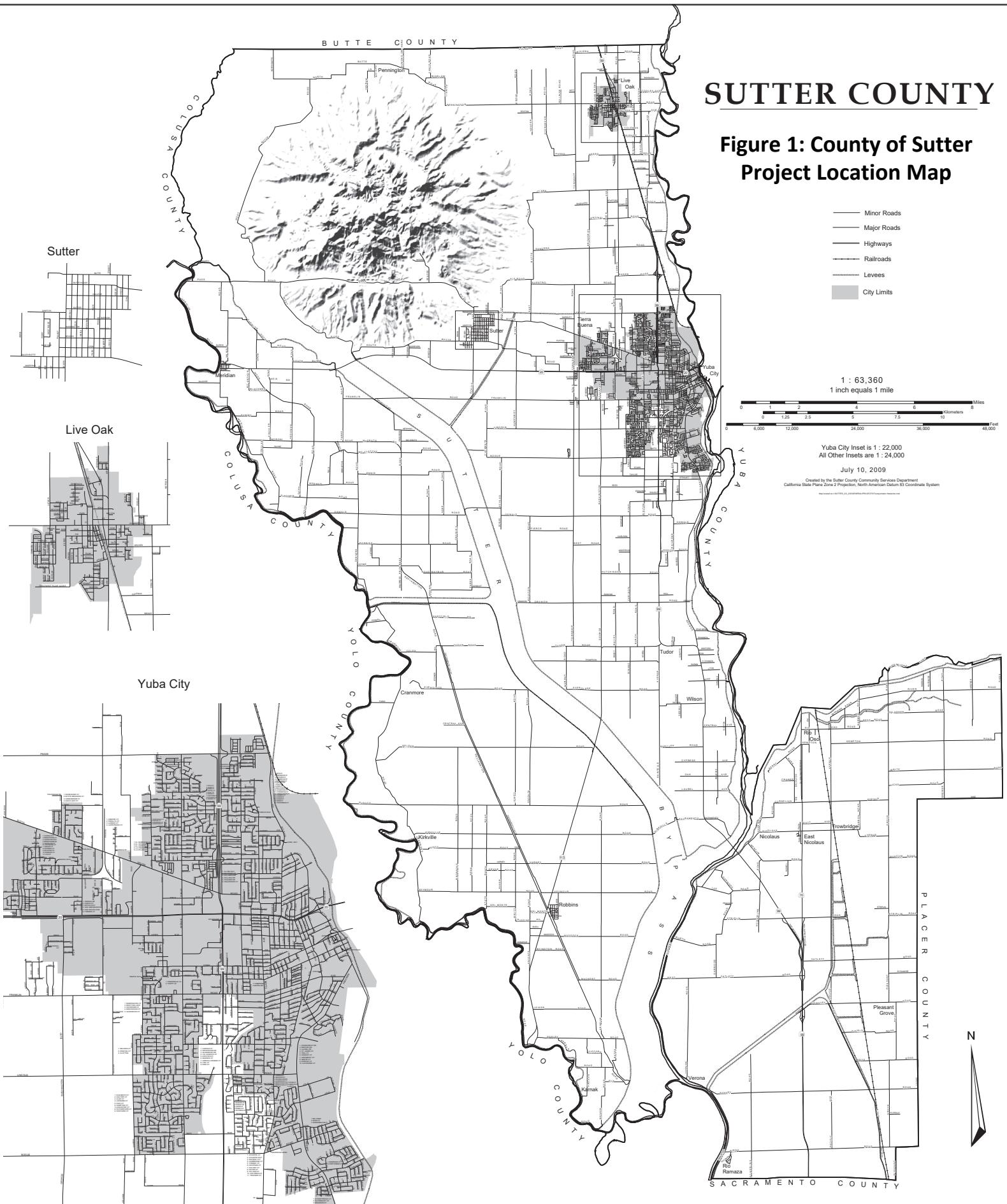
County of Sutter (herein referred to as the "County") is home to approximately 97,000 residents. The County contains approximately 385,000 acres, over 77% of which is classified as "important farmland," with 43.5% considered "prime farmland," making Sutter one of the most intensively farmed counties in California. The County is responsible for maintaining drainage facilities to allow for unencumbered flows of water from ag drainage during summer months and storm flows during the fall and winter months. Conveyances like Gilsizer Slough and the Live Oak Canal are prone to infestation by flow-obstructing aquatic vegetation like water primrose and cattails.

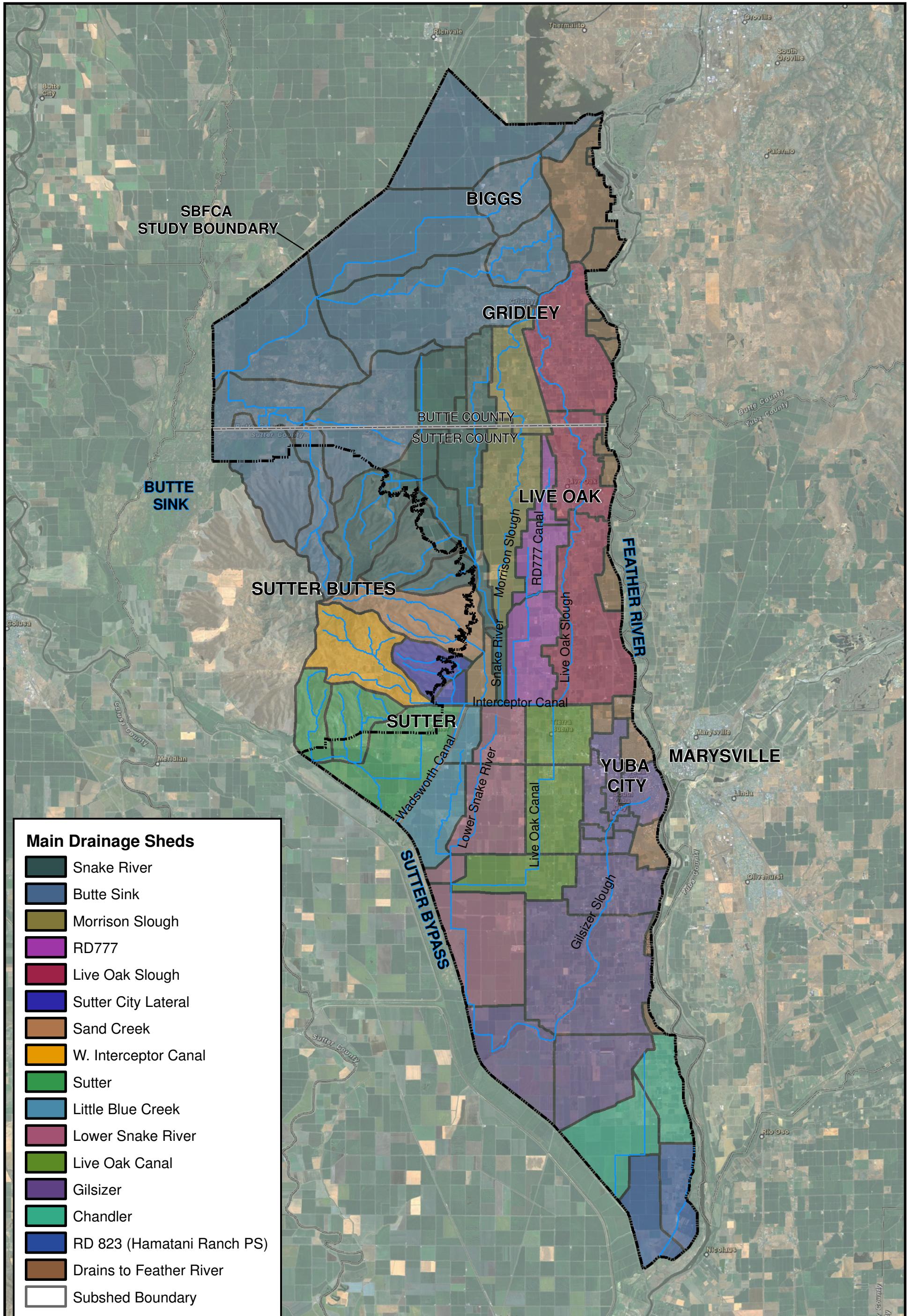
Using Integrated Pest Management (IPM) techniques, the County intends to apply algaecides and aquatic herbicides identified in the Notice of Intent to Comply (NOI) submitted to the SWRCB. For the purposes of applying to, and complying with, the Permit, the County has created this Aquatic Pesticide Application Plan (APAP).

This APAP is a comprehensive plan developed by Blankinship & Associates for the County that describes the project, the need for the project, what will be done to reduce water quality impacts, and how those impacts will be monitored. Specifically, this APAP contains the following eleven (11) elements.

1. Description of the water system to which algaecides and aquatic herbicides are being applied;
2. Description of the treatment area in the water system;
3. Description of types of weed(s) and algae that are being controlled and why;
4. Algaecide and aquatic herbicide products or types of algaecides and aquatic herbicides expected to be used and if known their degradation byproducts, the method in which they are applied, and if applicable, the adjuvants and surfactants used;
5. Discussion of the factors influencing the decision to select algaecide and aquatic herbicide applications for algae and weed control;
6. If applicable, list the gates or control structures to be used to control the extent of receiving waters potentially affected by algaecide and aquatic herbicide application and provide an inspection schedule of those gates or control structures to ensure they are not leaking;
7. If the Discharger has been granted a short-term or seasonal exception under State Water Board Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (Policy) Section 5.3 from meeting acrolein and copper receiving water limitations, provide the beginning and ending dates of the exception period, and justification for the needed time for the exception. If algaecide and aquatic herbicide applications occur outside of the exception period, describe plans to ensure that receiving water criteria are not exceeded because the Dischargers must comply with the acrolein and copper receiving water limitations for all applications that occur outside of the exception period;
8. Description of monitoring program;
9. Description of procedures used to prevent sample contamination from persons, equipment, and vehicles associated with algaecide and aquatic herbicide application;
10. Description of the Best Management Practices (BMPs) to be implemented. The BMPs shall include, at the minimum:
 - 10.1. Measures to prevent algaecide and aquatic herbicide spill and for spill containment during the event of a spill;
 - 10.2. Measures to ensure that only an appropriate rate of application consistent with product label requirements is applied for the targeted weeds or algae;
 - 10.3. The Discharger's plan in educating its staff and algaecide and aquatic herbicide applicators on how to avoid any potential adverse effects from the algaecide and aquatic herbicide applications;
 - 10.4. Discussion on planning and coordination with nearby farmers and agencies with water rights diversion so that beneficial uses of the water (irrigation, drinking water supply, domestic stock water, etc.) are not impacted during the treatment period; and
 - 10.5. A description of measures that will be used for preventing fish kill when algaecides and aquatic herbicides will be used for algae and aquatic weed controls.
11. Examination of Possible Alternatives. Dischargers should examine the alternatives to algaecide and aquatic herbicide use to reduce the need for applying algaecides and herbicides. Such methods include:
 - 11.1. Evaluating the following management options, in which the impact to water quality, impact to non-target organisms including plants, algaecide and aquatic herbicide resistance, feasibility, and cost effectiveness should be considered:

- 11.1.1. No action;
- 11.1.2. Prevention;
- 11.1.3. Mechanical or physical methods;
- 11.1.4. Cultural methods;
- 11.1.5. Biological control agents; and
- 11.1.6. Algaecides and aquatic herbicides;


If there are no alternatives to algaecides and aquatic herbicides, Dischargers shall use the minimum amount of algaecides and aquatic herbicides that is necessary to have an effective control program and is consistent with the algaecide and aquatic herbicide product label requirements.


- 11.2. Using the least intrusive method of algaecide and aquatic herbicide application; and
- 11.3. Applying a decision matrix concept to the choice of the most appropriate formulation.

This APAP is organized to address Elements 1 through 11.

SUTTER COUNTY

**Figure 1: County of Sutter
Project Location Map**

Map prepared by:

PETERSON, BRUSTAD, INC.
ENGINEERING CONSULTING

1180 Iron Point Rd., Suite 260
Folsom, CA 95630

Phone: (916) 608-2212
Fax: (916) 608-2232

0 3
Miles
1" = 3 mi.

County of Sutter Water Conveyances Map

FIGURE
2

Element 1: Description of the Water System

The County is responsible for the maintenance and operation of multiple surface water conveyances within the levee system that prevents flooding by the Feather River and Sacramento River. The conveyances range from almost natural sloughs with riparian habitat to highly modified and engineered flood control channels. Named waterbodies and systems maintained by the County include:

- Snake and Lower Snake River
- Morrison Slough
- RD 777 Waterbodies
- Live Oak Slough
- Sutter City Lateral
- Sand Creek
- Interceptor Canal
- Little Blue Creek
- Live Oak Canal
- Gilsizer Slough
- Chandler Slough
- RD 823 Waterbodies

Additionally, the County is charged with maintenance of numerous roadside ditches and drains. These facilities range in size and connectivity, where some of these ditches may be tributaries to WOTUS, or may not be considered WOTUS depending on the particular site and hydraulic connectivity.

Waterbodies listed above do not naturally flow out of the flood protection levees. Generally, irrigation or water districts within the levees have lift or recirculation pumps to reuse the water for irrigation or farming purposes during the spring, summer and early fall months. When not reused or during fall and winter months, the channels, sloughs, creeks and canals flow toward and terminate at various pump stations. The pump stations that can discharge water to the Sacramento or Feather River are operated by Yuba City or the Department of Water Resources.

Live Oak and Gilsizer Slough are currently listed on the 303(d) List of Impaired Water Bodies due to recurring exceedances of water quality standards. The sloughs are listed as impaired by pH, oxyfluorfen, dissolved oxygen (DO), diazinon, diuron, and toxicity (RWQCB 2018-B).

Element 2: Description of the Treatment Area

The County may apply algaecides and/or aquatic herbicides to any of the facilities described in Element 1 if aquatic weed or algae treatment thresholds are met.

Element 3: Description of Weeds and Algae

Weeds currently found in County facilities includes emergent, riparian, and terrestrial vegetation. Maintenance and conveyance challenges in County facilities are primarily due to cattails or waterprimrose growing throughout the channel and obstructing, constraining or preventing water flow. Other vegetation that causes operational impacts includes Johnson grass, terrestrial broadleaf and grass species that

prevent facility inspection, submersed aquatic vegetation like sago pondweed, and undesirable trees that impact bank stability and change flows in the channel like willows and tree of heaven.

While not an operational impairment, algae may be present in parts of the drainage system. During summer months, the County routinely receives calls complaining about the adverse smell from dead or decaying filamentous algae mats.

Efficient conveyance of ag drainage and stormwater flows are critical to the County's operations. The presence of weeds described in this Element in County facilities can block or impede water flow, reduce channel capacity, block culverts and water passage, and increase the occurrence of bank failure. The presence of aquatic vegetation reduces the County's flood fighting capabilities and could result in damage to property or harm to people the County's facilities are not maintained for unencumbered flow.

Element 4: Algaecides and Aquatic Herbicides Used, Known Degradation Byproducts, Application Methods and Adjuvants

Table 1 summarizes the algaecides and aquatic herbicides that may be used by the County.

Table 1: Algaecides and Aquatic Herbicides That May Be Used

Herbicide	Application Method(s)	Adjuvant	Degradation Byproducts
2,4-D	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic" labeled adjuvants	1,2,4-benzenetriol, 2,4-DCP, 2,4-DCA, chlorohydroquinone (CHQ), 4-chlorophenol, volatile organics, bound residues, and carbon dioxide ¹
Diquat Dibromide	Submersed boom, handgun, or boom sprayer	Various "Aquatic" labeled adjuvants	No major degradates ²
Endothall	Submersed boom/injection, handgun or boom sprayer, or spreader (granules)	Not Applicable	Endothall acid, potassium ions, coco-alkylamine ³
Flumioxazin	Submersed boom/injection, handgun or boom sprayer.	Various "Aquatic"-labeled adjuvants	TPHA, A-TPA, 482-HA, 482-PHO, PHO-HA, APF, and SAT-482-HA-2 ⁴
Fluridone	Backpack sprayer, handgun, submersed boom, spreader, or boom sprayer	Not Applicable	N-methyl Formamide ⁵
Glyphosate	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic" labeled adjuvants	Aminomethyl phosphonic acid (AMPA), carbon dioxide ⁶
Hydrogen Peroxide ⁷	Handgun, boom sprayer, injection	Not Applicable	Water and oxygen
Imazamox	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic" labeled adjuvants	Nicotinic acid and imazamox parent chemicals ⁸
Imazapyr	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic" labeled adjuvants	Pyridine hydroxy-dicarboxylic acid, pyridine dicarboxylic acid, and nicotinic acid ⁹
Penoxsulam	Backpack sprayer, handgun, or boom sprayer	Not Applicable	11 major and 2 minor degradates ¹⁰
Peroxyacetic Acid	Handgun, boom sprayer, injection	Not Applicable	Oxygen, carbon dioxide, water, and acetic acid ¹¹
Sodium Carbonate Peroxyhydrate	Handgun, boom sprayer (liquid), or spreader (granules)	Not Applicable	Sodium carbonate, water, and oxygen ¹²
Triclopyr	Backpack sprayer, handgun, or boom sprayer	Various "Aquatic" labeled adjuvants	3,5,6-trichloro-2-pyridinol (TCP) ¹³

¹ USEPA 2005-A² USEPA 1995³ Endothall-containing herbicides are formulated as either endothall dipotassium salt or N,N-dimethylalkylamine salt. Both formulations produce endothall acid as a degradation byproduct along with corresponding cation components (potassium ions and coco-alkylamine for the dipotassium salt and N,N-dimethylalkylamine formulations, respectively). (USEPA 2005-B)⁴ Major flumioxazin degradants include: 3,4,5,6-tetrahydrophthalic acid (TPHA); 3,4,5,6-Tetrahydrophthalic acid anhydride (A-TPA); 7-Fluoro-6[(2-carboxy-cyclohexenoyl)amino]-4-(2-propynyl)-1,4-benzoxazin-3(2H)-one (482-HA); N-(2-propynyl)-4-[4-carboxy-3-fluoro-2-(3,4,5,6-tetrahydrophthalimido)-2-but enylidene]azetidine-2-one (482-PHO); N-(2-propynyl)-4-[4-carboxy-3-fluoro-2-(2-carboxy-1-cyclohexencarbonylamino)-2-but enylidene]azetidine-2-one (PHO-HA); 6-Amino-7-fluoro-4-(2-propynyl)-1,4-benzoxazin-3(2H)-one (APF); and (1S,2S)-2-{[7-fluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]carbamoyl} cyclohexanecarboxylic acid (SAT-482-HA-2) (EFSA et al. 2020).

⁵ NMF was identified as the major degradate of fluridone when applied to water bodies (USEPA 2004). Minor degradates may include: 1-methyl-3-(4-hydroxyphenol)-5-[3-trifluoromethyl]phenyl]-4[1H]-pyridone and 1,4-dihydro-1-methyl-4-oxo-5-[3-(trifluoromethyl)phenyl]-3-pyridine (West *et al.* 1983 as cited in McLaren/Hart, 1995), and benzaldehyde, 3-(trifluoromethyl)-benzaldehyde, benzoic acid and 3-(trifluoromethyl)- benzoic acid (Saunders and Mosier, 1983 as cited in McLaren/Hart, 1995).

⁶ USEPA 1993-A

⁷ Hydrogen Dioxide is a synonym for Hydrogen Peroxide and shares the same CAS number (CAS No. 772-84-1).

⁸ The major degradate in the environment is CL 354,825 (Nicotinic acid, 5-hydroxy-6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl). Other metabolites include AC 312,622 (demethylated parent with intact ring structures and two carboxylic acid groups) and AC 354,825 (demethylated, decarboxylated parent with intact rings and one carboxylic acid group) (USEPA 2008).

⁹ USEPA 2006

¹⁰ Major degradates include: BSA, 2-amino-TP, TPSA, BSTCA, BSTCA methyl, 2-amino-TCA, 5-OH-penoxsulam, SFA, sulfonamide, 5,8-di-OH and 5-OH 2 amino TP. Minor degradates include: di-FESA and BST. (USEPA 2007).

¹¹ USEPA 1993-B

¹² USEPA 2002

¹³ USEPA 1998

All herbicide applications are made in accordance with the product label. For example, an application of glyphosate and an aquatic-labeled surfactant to waterprimrose in Gilsizer Slough will be made with a handgun sprayer to deliver the calibrated amount of herbicide per acre to achieve the rate specified on the product label for control of waterprimrose.

When applicable, aquatic-labeled adjuvants may be used to enhance the efficacy of an herbicide.

Figure 3, Aquatic Herbicide Application Log (AHAL) is the form used to record what active ingredients and adjuvants are applied to County facilities, and to document treatment area conditions during application of algaecides and/or aquatic herbicides.

Element 5: Discussion of Factors Influencing Herbicide Use

Treatment of aquatic vegetation or algae by the County is determined by the application of IPM. One of the primary operational goals of the IPM program is to establish a general and reasonable set of control measures that not only aid in managing aquatic vegetation populations, but also address public health & safety, water resources, economic, and regulatory requirements. An action threshold level is the point at which action should be taken to control aquatic vegetation before the conveyance is significantly impacted; moreover, established action threshold levels may change based on County needs, facility changes or landowner expectations.

A central feature of IPM is to determine when control action is absolutely necessary and when it is not. Examples of when or how thresholds are met are when vegetation impedes flow, decreases capacity, or creates a nuisance. The most typical problem associated with aquatic vegetation in County facilities is reduction in the County's conveyance capacity resulting in increased flood risks. If vegetation or algae equals or exceeds a threshold, a control method is implemented. Control methods may include mechanical, cultural controls, biological, and/or chemical techniques. Algaecide and aquatic herbicide use may or may not be employed as a last resort control method and is considered a critical part of the IPM

Fig. 3 Aquatic Herbicide Application Log

For Client Use Only

© 2023 Blankinship & Associates, Inc. All Rights Reserved

****IMPORTANT** To Be Completed EVERY TIME an Aquatic Herbicide Application is Made**

App. Start: Time _____ Date _____

App. End: Time _____ Date _____

Application Location _____

Agency _____ Personnel _____

Air Temperature (F°) _____ Wind Speed (mph) _____ Target Weeds _____

Treatment Area Size (choose one):

Acres _____ Linear Feet _____

Herbicide #1 Used _____ Rate/Target Conc. _____ Units _____ Total Amt. Applied _____ Units _____

Herbicide #2 Used _____ Rate/Target Conc. _____ Units _____ Total Amt. Applied _____ Units _____

Adjuvant #1 Used _____ Rate/Target Conc. _____ Units _____ Total Amt. Applied _____ Units _____

Adjuvant #2 Used _____ Rate/Target Conc. _____ Units _____ Total Amt. Applied _____ Units _____

Method of Application _____ Application Made (Circle One) **With** water flow / **Against** water flow / **Not Applicable**

Waterbody Type (Circle One) lined canal / unlined canal / creek / drain / ditch / basin / reservoir / lake / pond or list Other: _____

Water Flow (ft/sec, cfs) _____ Water Depth (ft) _____ Water Temperature (F°) _____

Percent Weed Cover _____ Water Sheen (Circle One) yes / no

Water Color (Circle One) none / blue / green / brown Water Clarity (Circle One) poor / fair / good

Please enter any other information regarding the application in the space provided below:

I (sign name) _____ certify that the APAP has been followed.

program. For some aquatic weed varieties, herbicides offer the most effective (i.e., long-lasting or least labor intensive) control; sometimes, they may be the only control available.

Algaecide and aquatic herbicide applications may also be made prior to threshold exceedance. For example, based on predicted growth rate and density, historical algae or aquatic weed trends, weather, water flow, and experience, aquatic weeds or algae may reasonably be predicted to cause future problems. For example, initiating application early in the season to control waterprimrose soon after emergence but before channels are clogged helps to prevent issues with water flow later in the summer season. Accordingly, nuisance vegetation may be treated soon after emergence or when appropriate based on the active ingredient to be used. Even though algae and aquatic weeds may not be an immediate problem at this phase, treating them before they mature reduces the total amount of algaecide and aquatic herbicide needed because the younger aquatic weeds may be more susceptible and there is less plant biomass and surface area to target.

Treating aquatic weeds and algae within the ideal time frame for the active ingredient selected for control or of the target plant's growth cycle ensures that the selected control measures will be most effective. Managing aquatic weed populations before they produce seeds, tubers or other reproductive organs is an important step in a comprehensive aquatic weed control program. Generally, treating aquatic weeds earlier in the growth cycle results in fewer controls needed and less total herbicide used. Selection of appropriate algaecide and aquatic herbicide(s) and rate of application is done based on the identification of the algae and aquatic weed, its growth stage and the appearance of that algae or aquatic weed on the product label.

The selection of and decision to use an algaecide or aquatic herbicide is based on the recommendation of a DPR-licensed Pest Control Adviser (PCA). The PCA considers a variety of control approaches that may include mechanical and/or cultural techniques that alone or in combination with algaecide or aquatic herbicide use are the most efficacious and protective of the environment.

Evaluating alternative control techniques is part of the County's IPM approach; therefore, an alternative treatment may be selected as part of a test program. Alternative control techniques include mechanical removal (i.e., manually with a tule rake, or with an excavator), mowing, grazing and/or native species establishment. A more detailed description of each of these is presented in **Element 10** and **Element 11** of this document.

In general, alternative control techniques are more expensive, labor intensive, not as effective, may cause temporary water quality degradation, and/or further spread algae or aquatic weeds. The equipment and labor required to perform these techniques is not always readily available. This may cause delays in removal leading to increased plant material to remove and increased cost.

Element 6: Gates and Control Structures

The County maintains the waterbodies described in Element 1 and associated culverts, road crossings and other associated structures. As required by product labels or to maintain compliance with RWLs, County staff will close gates, weirs or deactivate pumps during an algaecide or aquatic herbicide application to control the extent, if any, that receiving waters will be affected by residual algaecides or aquatic herbicides.

Element 7: State Implementation Policy (SIP) Section 5.3 Exception

The Permit allows the County to apply for a SIP Section 5.3 Exception for a short-term or seasonal exception to the dissolved copper or acrolein RWL. If an exception is granted, this section will be amended to describe the exception period as outlined in the required California Environmental Quality Act (CEQA) documentation.

The County does not currently have a SIP exception and does not anticipate using these active ingredients at the time this APAP was prepared.

Element 8: Description of Monitoring Program

Attachment C of the Permit presents the Monitoring and Reporting Program (MRP). The MRP addresses two key questions:

Question No. 1: Does the residual algaecides and aquatic herbicides discharge cause an exceedance of the receiving water limitations?

Question No. 2: Does the discharge of residual algaecides and aquatic herbicides, including active ingredients, inert ingredients, and degradation byproducts, in any combination cause or contribute to an exceedance of the “no toxics in toxic amount” narrative toxicity objective?

Attachment C of the Permit provides MRP guidelines that the County will use to meet the aforementioned goals.

8.1 Data Collection

Visual monitoring will be performed for all algaecide and aquatic herbicide applications at all sites and be recorded by qualified personnel.

Figure 3 (Aquatic Pesticide Application Log) or its equivalent, **Figure 4** (Aquatic Herbicide Field Monitoring & Sampling Form) will be used.

Figure 4: Aquatic Herbicide Field Monitoring & Sampling Form

For Client Use Only
© 2023 Blankinship & Associates, Inc. All Rights Reserved

****IMPORTANT** Attach Relevant Aquatic Herbicide Application Log (AHAL) Form**

SAMPLE #1: Background Monitoring (Background)

Collect upstream of or just outside of treatment area at time of treatment, or within in treatment area within 24 hours of the treatment starting.

Section 1: Herbicide Application Information

Agency: _____

System Treated: _____

Application Start Date: _____

Herbicides Applied: _____

Surfactants Used: _____

Target Vegetation: _____

Environmental Setting (circle one): Flowing | Static

Section 2: Monitoring Information

Monitoring Date: _____ Time: _____

Sampler Name: _____

Monitoring Location: _____

GPS Coordinates: _____

Sketch monitoring location or describe location with identifiable points of reference (required if GPS coordinates not provided).

Section 3: Water Quality Characteristics

DO (mg/L): _____ EC (µS/cm): _____ pH: _____

Temperature (°C): _____ Turbidity (NTU): _____ Water speed (ft/sec)*: _____

* Water speed only required for flowing water

Section 4: Site Observations (Refer to Definitions Sheet and mark a response for each field)

DO YOU NOTICE	N/A	No	UNKNOWN	YES, THE BENEFICIAL USE IS ADVERSELY AFFECTED. DESCRIBE.
Adverse Incident				
Floating Material				
Settleable Substances				
Suspended Material				
Bottom Deposits				
Tastes and Odors				
Water Coloration				
Visible Films, Sheens, or Coatings				
Fungi, Slimes, or Objectionable Growths				
Aquatic Community Degradation				

Figure 4: Aquatic Herbicide Field Monitoring & Sampling Form

For Client Use Only
© 2023 Blankinship & Associates, Inc. All Rights Reserved

SAMPLE #2: Event Monitoring (Event)

Collect just outside of the treatment area immediately after the application of herbicide(s), but after sufficient time has elapsed such that treated water would have exited the treatment area. The timing for the collection of this sample will be a site-specific estimation.

Is water leaving the treatment area?

Yes

No

If no water is leaving the treatment area, complete sections 1, 2, and 4, skip section 3, and do not collect a sample.

Section 1: Herbicide Application Information

Agency: _____

System Treated: _____

Application Start Date: _____

Herbicides Applied: _____

Surfactants Used: _____

Target Vegetation: _____

Environmental Setting (circle one): Flowing | Static

Section 2: Monitoring Information

Monitoring Date: _____ Time: _____

Sampler Name: _____

Monitoring Location: _____

GPS Coordinates: _____

Sketch monitoring location or describe location with identifiable points of reference (required if GPS coordinates not provided).

Section 3: Water Quality Characteristics

DO (mg/L): _____ EC (µS/cm): _____ pH: _____

Temperature (°C): _____ Turbidity (NTU): _____ Water speed (ft/sec)*: _____

* Water speed only required for flowing water

Section 4: Site Observations (Refer to Definitions Sheet and mark a response for each field)

DO YOU NOTICE	N/A	No	UNKNOWN	YES, THE BENEFICIAL USE IS ADVERSELY AFFECTED. DESCRIBE.
Adverse Incident				
Floating Material				
Settleable Substances				
Suspended Material				
Bottom Deposits				
Tastes and Odors				
Water Coloration				
Visible Films, Sheens, or Coatings				
Fungi, Slimes, or Objectionable Growths				
Aquatic Community Degradation				

Figure 4: Aquatic Herbicide Field Monitoring & Sampling Form

For Client Use Only
© 2023 Blankinship & Associates, Inc. All Rights Reserved

For each active ingredient, one Field Duplicate and one Field Blank must be collected per environmental setting (moving water vs static water) per year

SAMPLE #3: Post-Event Monitoring (Post)

Collect from inside treatment area within 7 days of application, or when treatment is deemed complete.

Section 1: Herbicide Application Information

Agency: _____

System Treated: _____

Application Start Date: _____

Herbicides Applied: _____

Surfactants Used: _____

Target Vegetation: _____

Environmental Setting (circle one): Flowing | Static

Section 2: Monitoring Information

Monitoring Date: _____ Time: _____

Sampler Name: _____

Monitoring Location: _____

GPS Coordinates: _____

Sketch monitoring location or describe location with identifiable points of reference (required if GPS coordinates not provided).

Section 3: Water Quality Characteristics

DO (mg/L): _____ EC (µS/cm): _____ pH: _____

Temperature (°C): _____ Turbidity (NTU): _____ Water speed (ft/sec)*: _____

* Water speed only required for flowing water

Section 4: Site Observations (Refer to Definitions Sheet and mark a response for each field)

DO YOU NOTICE	N/A	NO	UNKNOWN	YES, THE BENEFICIAL USE IS ADVERSELY AFFECTED. DESCRIBE.
Adverse Incident				
Floating Material				
Settleable Substances				
Suspended Material				
Bottom Deposits				
Tastes and Odors				
Water Coloration				
Visible Films, Sheens, or Coatings				
Fungi, Slimes, or Objectionable Growths				
Aquatic Community Degradation				

Figure 4: Aquatic Herbicide Field Monitoring & Sampling Form

For Client Use Only
© 2023 Blankinship & Associates, Inc. All Rights Reserved

**** For each active ingredient, one Field Duplicate (FD) and one Field Blank (FB) must be collected per environmental setting (moving water vs static water) per year****

Field Duplicate (FD) Sample:

Collect at same location and time as the monitoring sample (if possible collect with event or post-event sample) and using the same sampling technique.

Section 1: Herbicide Application Information

Agency: _____

System Treated: _____

Application Start Date: _____

Herbicides Applied: _____

Surfactants Used: _____

Target Vegetation: _____

Section 2: Monitoring Information

Monitoring Date: _____ Time: _____

Sampler Name: _____

Monitoring Location: *See (circle one): BG / Event / Post

GPS Coordinates: *See (circle one): BG / Event / Post

Sketch monitoring location or describe location with identifiable points of reference (required if GPS coordinates not provided).

Section 3: Water Quality Measurements

DO (mg/L): _____ EC (µS/cm): _____ pH: _____

Temperature (°C): _____ Turbidity (NTU): _____ Water speed (ft/sec)*: _____

* Water speed only required for flowing water

Section 4: Site Observations (Refer to Definitions Sheet and mark a response for each field)

*See (circle one): BG / Event / Post

DO YOU NOTICE	N/A	No	UNKNOWN	YES, THE BENEFICIAL USE IS ADVERSELY AFFECTED. DESCRIBE.
Adverse Incident				
Floating Material				
Settleable Substances				
Suspended Material				
Bottom Deposits				
Tastes and Odors				
Water Coloration				
Visible Films, Sheens, or Coatings				
Fungi, Slimes, or Objectionable Growths				
Aquatic Community Degradation				

Figure 4: Aquatic Herbicide Field Monitoring & Sampling Form

For Client Use Only

© 2023 Blankinship & Associates, Inc . All Rights Reserved

** For each active ingredient, one Field Duplicate (FD) and one Field Blank (FB) must be collected per environmental setting (moving water vs static water) per year**

Field Blank (FB) Sample:

Prepare using distilled water at the monitoring site immediately prior to or immediately after the collection of the monitoring sample.

Section 1: Herbicide Application Information

Agency: _____

System Treated: _____

Application Start Date: _____

Herbicides Applied: _____

Surfactants Used: _____

Target Vegetation: _____

Section 2: Monitoring Information

Monitoring Date: _____ Time: _____

Sampler Name: _____

Section 3: Water Quality Measurements

DO (mg/L): _____ EC (µS/cm): _____ pH: _____

Temperature (°C): _____ Turbidity (NTU): _____ Water speed (ft/sec): _____ N/A _____

Section 4: Site Observations (Refer to Definitions Sheet and mark a response for each field)

DO YOU NOTICE	N/A	No	UNKNOWN	YES, THE BENEFICIAL USE IS ADVERSELY AFFECTED. DESCRIBE.
Adverse Incident	X			
Floating Material	X			
Settleable Substances	X			
Suspended Material	X			
Bottom Deposits	X			
Tastes and Odors	X			
Water Coloration	X			
Visible Films, Sheens, or Coatings	X			
Fungi, Slimes, or Objectionable Growths	X			
Aquatic Community Degradation	X			

8.2 Monitoring Locations and Frequency

Water quality sampling for glyphosate will be conducted for one application event from each environmental setting, flowing water and non-flowing water, per year if applications are made. For application of all other algaecides and aquatic herbicide active ingredients listed on the Permit, the County will collect samples from a minimum of six application events for each active ingredient in each environmental setting per year. If there are less than six application events in a year for an active ingredient, the County will collect samples for each application event in each environmental setting.

Water quality sampling is required for applications of products that contain sodium carbonate peroxyhydrate, peroxyacetic acid, and/or hydrogen peroxide, however, no chemical analysis for these active ingredients is required by the Permit. If applications sodium carbonate peroxyhydrate, peroxyacetic acid, and/or hydrogen peroxide are made, the County will collect samples consistent with permit requirements and analyze them for the field parameters of pH, DO, temperature, turbidity, and conductance.

If the results from six consecutive sampling events show concentrations that are less than the applicable RWLs or RWMTs in an environmental setting, the County will reduce the sampling frequency for that active ingredient to one per year in that environmental setting. If the annual sampling shows exceedances of the applicable RWL, the County will be required to return to sampling six applications the next year, and until sampling may be reduced again. If the annual sampling shows an exceedance of a RWMT, the County will initiate an additional investigation into the cause of the exceedance, implement additional BMPs to reduce the concentration below the RWMT in future applications, and evaluate potential use of alternative products.

Sites will be chosen to represent the variations in treatment that occur, including algaecide or aquatic herbicide use, hydrology, and environmental setting, conveyance or impoundment type, seasonal, and regional variations. The exact location(s) of sample site(s) will be determined after site scouting and a decision to make an aquatic herbicide application are made per the County's IPM approach. The forms used to document sampling are shown in **Figure 4**.

8.2.1 Sample Locations

Sampling will include background, event, and post-event monitoring as follows:

Background Monitoring: In moving water, the background (BG) sample is collected upstream of the treatment area at the time of the application event, or in the treatment area within 24 hours prior to the start of the application.

Event Monitoring: The event monitoring (Event) sample for **flowing** water is collected immediately downstream of treatment area immediately after the application event, but after sufficient time has elapsed such that treated water would have exited the treatment area.

The Event sample for **non-flowing (static)** water is collected immediately outside the treatment area immediately after the application event, but after sufficient time has elapsed such that treated water would have exited the treatment area.

The location and timing for the collection of the Event sample may be based on several factors including, but not limited to algae/aquatic weed density and type, flow rates, size of the treatment area and duration of treatment.

Post-Event Monitoring: The post-event monitoring (Post) sample is collected within the treatment area within one week after the application, or when the treatment is deemed complete.

One full set of three samples (i.e., BG, Event and Post) will be collected during each treatment from the representative site(s) treated within the County according to the monitoring frequency and locations described earlier.

Additionally, one Field Duplicate (FD) and one Field Blank (FB) will be collected and submitted for analysis for each analyte, once per year. The FD and FB samples are typically collected during Event Monitoring if water is leaving the treatment area. See **Figure 4** for the field sampling forms to be used.

8.3 Sample Collection

If the water depth is 6 feet or greater the sample will be collected at a depth of 3 feet. If the water depth is less than 6 feet the sample will be collected at the approximate mid-depth. As necessary, an intermediary sampling device (e.g., Van-Dorn style sampler or long-handled sampling pole) will be used for locations that are difficult to access. Long-handled sampling poles with attached sampling container will be inverted before being lowered into the water to the desired sample depth, where it will be turned upright to collect the sample. Appropriate cleaning technique is discussed in Element 8.8.4.

8.4 Field Measurements

In conjunction with sample collection, temperature will be measured in the field. Turbidity, electrical conductivity, pH, and DO may be measured in the field using field meters as available or analyzed in the laboratory. Turbidity, pH, and DO meters are calibrated according to manufacturer's specifications at the recommended frequency and checked with a standard prior to each use. Conductivity meters are calibrated by the manufacturer and will be checked according to manufacturer's specifications with standards throughout the year (typically once per month) to evaluate instrument performance. If the calibration is outside the manufacturer's specifications, the conductivity probe will be recalibrated. Calibration logs are maintained for all instruments to document calibration.

8.5 Sample Preservation and Transportation

Samples may be collected directly into preserved containers, or collected in unpreserved containers, and preserved at the laboratory upon receipt if the analytical method requires preservation. Once a sample is collected and labeled it will immediately be placed in a dark, cold environment, typically a cooler with ice maintained at four degrees Celsius (°C). Delivery to the laboratory should occur as soon as practicable after sample collection.

8.6 Sample Analysis

Table 2 shows the constituents that each sample must be analyzed for. Note that chemical analysis is only required for the active ingredient(s) used in the treatment.

Table 2: Required Sample Analysis

Analyte	EPA Method	Reporting Limit	Hold Time (Days)	Container	Chemical Preservative
Temperature ¹	N/A	N/A	N/A	N/A	N/A
Dissolved Oxygen ¹	360.1 or 360.2	0.0 mg/L	1	1L Amber Glass	None
Turbidity ²	180.1	0.00 NTU	2	100 mL HDPE	None
Electrical Conductivity ²	120.1	0 µS/cm	28	100 mL HDPE	None
pH ²	150.1 or 150.2	1-14	Immediately	100 mL HDPE	None
*2,4-D	8151, 8150A, 615	0.5 µg/L	7	1L Amber Glass	None
*Diquat Dibromide	549	40 µg/L	7	500 mL Amber HDPE	H ₂ SO ₄
*Endothall	548.1	40 µg/L	7	500 mL or 250 mL Amber Glass	None or HCl
*Flumioxazin	HPLC	10 µg/L	14	1 L Amber Glass	None
*Fluridone	SePro FasTest, HPLC	1 µg/L	7	30 ml Amber HDPE or 2 x 40 mL Vial	None
*Glyphosate	547	0.5 µg/L	14	2 x 40 mL Vial	None
*Imazamox	HPLC	50 µg/L	14	2 x 40 mL Vial	None
*Imazapyr	532m	100 µg/L	14	1 L Amber Glass	None
Nonylphenol ³	550.1m	0.5 µg/L	7	2 x 40 mL Vial	None
*Penoxsulam	532m	20 µg/L	7	1 L Amber Glass	None
*Triclopyr	8151, 8150A, 615	0.5 µg/L	7	2 x 40 mL Vial	None

Notes:

* Signifies algaecide or aquatic herbicide active ingredient. Chemical analysis is only required for the active ingredient(s) used in treatment. Active ingredient analysis not required for algaecides and aquatic herbicides containing sodium carbonate peroxyhydrate, peroxyacetic acid, and/or hydrogen peroxide; however, field parameters must still be measured and reported. EPA Methods are taken from NEMI 2004.

¹Field measured.

²May be field or laboratory measured.

³Will be analyzed when a nonylphenol-containing surfactant is used.

H₂SO₄ – Sulfuric acid

HCl – Hydrochloric acid

HDPE – High density polyethylene

HPLC – High Performance Liquid Chromatography.

m – Modified extraction or analysis technique.

8.7 Reporting Procedures

An annual report for each reporting period, the calendar year of January 1 to December 31, will be prepared and submitted by March 1 of the following year to the appropriate RWQCB. In years when no algaecides or aquatic herbicides are used, a letter stating no applications will be sent to the appropriate RWQCB in lieu of an annual report.

The annual report will contain the following information as described in Attachment C of the Permit:

1. An Executive Summary discussing compliance or violation of the Permit and the effectiveness of the APAP; and
2. A summary of monitoring data, including the identification of water quality improvements or degradation as a result of algaecide or aquatic herbicide application.

The County will collect and retain all information on the previous reporting year. When requested by the Deputy Director or Executive Officer of the applicable RWQCB, the County will submit the annual information collected, including:

1. An Executive Summary discussing compliance or violation of the Permit and the effectiveness of the APAP to reduce or prevent the discharge of pollutants associated with herbicide applications;
2. A summary of monitoring data, including the identification of water quality improvements or degradation as a result of algaecide or aquatic herbicide application, if appropriate, and recommendations for improvement to the APAP (including proposed BMPs) and monitoring program based on the monitoring results. All receiving water monitoring data shall be compared to applicable receiving water limitations and receiving water monitoring triggers;
3. Identification of BMPs and a discussion of their effectiveness in meeting the Permit requirements;
4. A discussion of BMP modifications addressing violations of the Permit;
5. A map showing the location of each treatment area;
6. Types and amounts of aquatic herbicides used at each application event during each application
7. Information on surface area and/or volume of treatment area and any other information used to calculate dosage, concentration, and quantity of each aquatic herbicide used;
8. Sampling results shall indicate the name of the sampling agency or organization, detailed sampling location information (including latitude and longitude or township/range/section if available), detailed map or description of each sampling area (address, cross roads, etc.), collection date, name of constituent/parameter and its concentration detected, minimum levels, method detection limits for each constituent analysis, name or description of water body sampled, and a comparison with applicable water quality standards, description of analytical QA/quality control plan. Sampling results shall be tabulated so that they are readily discernible; and
9. Summary of AHALS, **Figure 3**.

The County will report to the SWRCB and appropriate RWQCB any noncompliance, including any unexpected or unintended effect of an algaecide or aquatic herbicide that may endanger health or the environment. The Twenty-Four Hour Report will be provided orally, by way of a phone call, to the SWRCB and appropriate RWQCB within 24 hours from the time the County becomes aware of any noncompliance. As needed, an email with the report contents may be sent if Board staff cannot be reached by phone. The Twenty-Four Hour Report will include the following information:

1. The caller's name and telephone number;
2. Applicator name and mailing address;
3. Waste Discharge Identification (WDID) number;
4. How and when the County became aware of the noncompliance;
5. Description of the location of the noncompliance;
6. Description of the noncompliance identified and the United States Environmental Protection Agency (USEPA) pesticide registration number for each product the County applied in the area of the noncompliance; and
7. Description of the steps that the County has taken or will take to correct, repair, remedy, cleanup, or otherwise address any adverse effects.

If the County is unable to notify the SWRCB and appropriate RWQCB within 24 hours, the County will do so as soon as possible and provide a rationale for why the County was unable to provide notification of noncompliance within 24 hours.

In addition to the Twenty-Four Hour Report, the County will provide a written submission within five (5) days of the time the County becomes aware of the noncompliance. The Five-Day Written Report will contain the following information:

1. Date and time the County contacted the State Water Board and the appropriate Regional Water Board notifying of the noncompliance and any instructions received from the State and/or Regional Water Board; information required to be provided in Section D.1 (24-Hour Reporting);
2. A description of the noncompliance and its cause, including exact date and time and species affected, estimated number of individual and approximate size of dead or distressed organisms (other than the pests to be eliminated);
3. Location of incident, including the names of any waters affected and appearance of those waters (sheen, color, clarity, etc.);
4. Magnitude and scope of the affected area (e.g., aquatic square area or total stream distance affected);
5. Algaecide and aquatic herbicide application rate, intended use site (e.g., banks, above, or direct to water), method of application, and name of algaecide and herbicide product, description of algaecide and herbicide ingredients, and U.S. EPA registration number;
6. Description of the habitat and the circumstances under which the noncompliance activity occurred (including any available ambient water data for aquatic algaecides and aquatic herbicides applied);
7. Laboratory tests performed, if any, and timing of tests. Provide a summary of the test results within five days after they become available;
8. If applicable, explain why the County believes the noncompliance could not have been caused by exposure to the algaecides or aquatic herbicides from the County's application; and
9. Actions to be taken to prevent recurrence of adverse incidents.

The Five-Day Written Report will be submitted within five (5) days of the time the County becomes aware of the noncompliance unless SWRCB staff or RWQCB staff waive the above-described report if an oral report has been received within 24 hours.

8.8 Sampling Methods and Guidelines

The purpose of this section is to present methods and guidelines for the collection and analysis of samples necessary to meet the APAP objective of assessing adverse impacts, if any, to beneficial uses of water bodies treated with algaecides and aquatic herbicides. Techniques, equipment, analytical methods, and quality assurance and quality control (QA/QC) procedures for sample collection and analysis are described along with relevant QA/QC metrics to evaluate data collected. Guidance referenced for the preparation of this chapter included: NPDES Storm Water Sampling Guidance Document (USEPA 1992); Guidelines and Specifications for Preparing Quality Assurance Project Plans (USEPA 1980); and U.S. Geological Survey, National Field Manual for the Collection of Water Quality Data (USGS 1995).

8.8.1 Surface Water Sampling Techniques

As discussed in Element 8.3, if the water depth is 6 feet or greater the sample will be collected at a depth of 3 feet, if the water depth is less than 6 feet the sample will be collected at the approximate mid-depth. As necessary, an intermediary sampling device (e.g., Van-Dorn style sampler or long-handled sampling pole) will be used for locations that are difficult to access. Long-handled sampling poles with attached sampling container will be inverted before being lowered into the water to the desired sample depth, where it will be turned upright to collect the sample. Appropriate cleaning technique is discussed in Element 8.8.4.

During collection, the samples will be collected in a manner that minimizes the amount of suspended sediment and debris in the sample. Surface water grab samples will be collected directly by the sample container, or by an intermediary container in the event that the sample container cannot be adequately or safely used. Intermediary samplers will be either poly (plastic/HDPE), stainless steel or glass. Any container that will be reused between sites will be washed thoroughly and triple rinsed before collection of the next sample, see Element 8.8.4. Alternatively, disposable poly or glass intermediary sample containers can be used.

8.8.2 Sample Containers

Clean, empty sample containers with caps will be supplied in protective cardboard cartons or ice chests by the primary laboratory. The containers will be certified clean by either the laboratory or the container supplier. To ensure data quality control, the sampler will utilize the appropriate sample container as specified by the laboratory for each sample type. Sample container type, holding time, and appropriate preservatives are listed in **Table 2**. Each container will be affixed with a label indicating a discrete sample number for each sample location. The label will also indicate the date and time of sampling and the sampler's name.

8.8.3 Sample Preservation and Filtering

As discussed in Element 8.3, samples may either be collected with bottles containing the correct preservative(s), or collected in unpreserved bottles and preserved upon receipt at the analytical lab. If filtration is required, it must be done prior to sample preservation. After collection, samples will be refrigerated at approximately 4°C, stored in a dark place, and transported to the analytical laboratory. Refer to **Table 2**.

8.8.4 Sampling Equipment Cleaning

In the event that sampling equipment will be used in more than one location, the equipment will be thoroughly cleaned with a non-phosphate cleaner, triple-rinsed with distilled water, and then rinsed once with the water being sampled prior to its first use at a new sample collection location.

8.8.5 Sample Packing and Shipping

All samples are to be packed and transported the day the samples are collected to provide ample time for samples to be analyzed within the required holding time.

Ice will be included in coolers containing samples that require temperature control. Samples will be packaged in the following manner:

1. Sample container stickers will be checked for secure attachment to each sample container.
2. The sample containers will be placed in the cooler. Bubble-wrap, suitable foam padding, or newspaper will be placed between sample containers to protect the sample containers from breakage during shipment and handling.
3. The Chain of Custody (COC) will be placed inside a plastic bag and placed inside the cooler, typically taped to the underside of the lid. The COC will indicate each unique sample identification name, time and place of sample collection, the sample collector, the required analysis, turn-around-time, and location to which data will be reported.

4. The cooler will then be readied for pick-up by a courier or delivered directly to the laboratory.

8.9 Field Sampling Operations

8.9.1 Field Logbook

A 3-ring binder or bound logbook will be maintained by members of the sampling team to provide a record of sample location, significant events, observations, and measurements taken during sampling. Observations and measurements should be supplemented with pictures of site conditions at the time of sampling if possible. Field logbooks are intended to provide sufficient data and observations to enable project team members to reconstruct events that occurred during the sampling. The field logbook entries will be legible, factual, detailed, and objective.

When recording observations in the field book, the sampling team will note the presence or absence of:

1. Floating or suspended matter;
2. Discoloration;
3. Bottom deposits;
4. Aquatic life;
5. Visible films, sheens, or coatings;
6. Fungi, slimes, or objectionable growths; and
7. Potential nuisance conditions.

See **Figure 4** for the forms to be used to record relevant field data when sampling.

8.9.2 Alteration of Sampling Techniques

It is possible that actual field conditions may require a modification of the procedures outlined herein. Specifically, water levels, weather, other environmental parameters and hazards including stream flow, rainfall, and irrigation water use may pose access and/or sampling problems. In such instances, variations from standard procedures and planned sampling locations and frequencies will be documented by means of appropriate entry into the field logbook.

8.9.3 Flow Estimation

A flow meter calibrated according to the manufacturer's directions will be placed as close to the center of the stream or creek as possible and a reading taken in feet per second (ft/sec). Alternatively, the time a common floating object (branch, leaf, etc.) travels a known distance will be estimated and represented in ft/sec. A minimum distance of approximately 25 feet will be used. Flow estimation measurements will be made for all moving water sampling locations.

8.9.4 Chain-of-Custody (COC)

The COC record will be employed as physical evidence of sample custody. The sampler will complete a COC record to accompany each sample shipment from the field to the laboratory. The COC will specify: time, date, location of sample collection, specific and unique sample number, requested analysis, sampler name, required turn-around-time, time and date of sample transaction between field and laboratory staff, preservative, if any, and name of receiving party at the laboratory.

Corrections to the COC will be made by drawing a line through, initialing, and dating the error, and entering the correct information. Erasures are not permitted.

Upon receipt of the samples, laboratory personnel will check to ensure that the contents of the ice chest(s) are accurately described by the COC. Upon verification of the number and type of samples and the requested analysis, a laboratory representative will sign the COC, indicating receipt of the samples.

The COC record form will be completed in duplicate. Upon sample delivery, the original copy will be left with the laboratory and a copy will be kept by the sampler, three-hole punched, and placed in the field logbook.

8.9.5 Sample Label

The label will contain information on the specific project (i.e., County of Sutter), the unique individual sample ID (i.e., Live Oak Canal – BG), the date and time the sample was collected, and the name of the sampler (i.e. J. Lem).

Prior to sampling, a waterproof label will be completed with indelible or waterproof ink and will be affixed to the appropriate container.

8.9.6 Corrections to Documentation

Documents will not be destroyed or thrown away, even if they are illegible or contain inaccuracies that require a replacement or correction. If an error is made on a document, the person completing the monitoring form, COC or other document will make corrections by making a line through the error and entering the correct information. The erroneous information will not be obliterated. Corrections will be initialed and dated.

8.9.7 Document Control

A central file location will be established and used to store documentation such as the field logbook, meter calibration and maintenance information, and laboratory data.

8.9.8 Sample Kit

Prior to departing to the field to collect samples, the following equipment will be prepared for use:

- Laboratory-supplied sampling bottles (one set for each sample to be collected plus spares, plus QA/QC samples)
- Sample labels (one for each sample to be collected plus spares)
- Sharpie® Pen or other permanent, waterproof ink marker
- Chain of Custody forms
- Field data logbook
- Flow meter (optional – for moving water applications)
- Zip lock style bags for paperwork
- Non-phosphate cleaner (i.e. Liqui-Nox®)
- Deionized or distilled water

- Ice or blue ice packs
- Clear mailing tape
- Cooler for samples
- Sampling pole with swing sampler or Van-Dorn style sampler
- Nitrile or other disposable gloves
- Rubber boots or waders
- Smartphone, stopwatch
- Camera

8.10 Quality Assurance and Quality Control

The purpose of QA/QC is to assure and control the quality of data generated during sample collection and analysis as described earlier in this document. QA/QC are measured in a variety of ways, as described below.

8.10.1 Precision

Precision is a measure of the reproducibility of measurements under a given set of conditions. It is a quantitative measure of the variability of a group of measurements compared to the average value of the group and is expressed as the relative percent difference (RPD). Sources of error in precision (imprecision) can be related to both laboratory and field techniques. Specifically, lack of precision is caused by inconsistencies in instrument setting, measurement and sampling techniques, and record keeping.

Laboratory precision is estimated by generating analytical laboratory matrix spike (MS) and matrix spike duplicate (MSD) sample results and calculating RPD. In general, laboratory RPD values of less than 25% will be considered acceptable.

Field precision is estimated by collecting FDs in the field and calculating RPD. In general, field RPD values of less than 35% will be considered acceptable. Refer to the discussion of FDs in Element 8.10.5.

8.10.2 Accuracy

Accuracy is a measure of how close data are to their true values and is expressed as percent recovery (%R), which is the difference between the mean and the true value expressed as a percentage of the true value. Sources of error (inaccuracy) are the sampling process, field contamination, preservation, handling, sample matrix effects, sample preparation, analytical techniques, and instrument error.

Laboratory accuracy is estimated using reference standards, MS and MSD samples. Acceptable accuracy is generally between 75 and 125% and varies with the laboratory and analytical method. Refer to the earlier discussion of MS and MSD.

8.10.3 Completeness

Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness objective is that a sufficient amount of valid data is generated to allow for submittal to the SWRCB and RWQCB. Completeness will be assessed by comparing the number of valid sample results to the number of samples collected. The objective for completeness is $\geq 80\%$.

8.10.4 Representativeness

Representativeness refers to a sample or group of samples that reflects the predominant characteristics of the media at the sampling point. The objective in addressing representativeness is to assess whether the information obtained during the sampling and analysis represents the actual site conditions.

8.10.5 Field Duplicate

The purpose of a FD is to quantify the precision, or reproducibility, of the field sampling technique. It involves the duplication of the technique used for a particular field sample collection method and the subsequent comparison of the initial and duplicate values. This comparison is measured as the RPD. RPD is calculated as follows:

$$\text{RPD} = [(\text{Sample1} - \text{Sample2}) / (\text{Average of Samples 1 and 2})] \times 100$$

An acceptable field RPD value is $\leq 35\%$.

The FD is collected at the same time as the actual field sample and one FD per year will be collected.

8.10.6 Field Blank

The purpose of the FB is to assure that the field sampling technique, equipment, or equipment cleaning technique or materials do not impart a false positive or negative result during the collection of the sample. A FB will be prepared with distilled water and allowed to come into contact with the sampling device in a manner identical to the actual sample. The only acceptable values for analytes in the FB is less than the detection limit for the compounds of interest, or an expected, previously determined, background value.

The FB will be collected at the same time as the actual field sample and one FB per year will be collected.

8.10.7 Laboratory Quality Assurance and Quality Control

Laboratory precision and accuracy will be monitored by a series of laboratory-generated quality control samples. As long as sufficient sample volume is collected and submitted to the laboratory, no additional effort is required by field activities to generate laboratory quality control samples. Each set of field samples will have associated with it one each from the following set of laboratory quality control samples.

8.10.7.1 Method Blank

The purpose of the method blank (MB) is to assure that the analytical technique does not impart a false positive result during the preparation or analysis of the sample. An MB will be prepared by the laboratory from high purity distilled or deionized water. The only acceptable values for analytes in the MB are zero or an expected, previously determined, background values.

8.10.7.2 Matrix Spike

The purpose of a MS is to quantify accuracy and to assure that the analytical technique does not impart a false negative or positive result during the preparation or analysis of the sample. It involves the

introduction of the analyte (or an analyte surrogate) of interest into the actual sample matrix and then quantitating it.

The amount detected divided by the amount added to the matrix is expressed as %R. Acceptable values of %R range from 75% to 125%. %R is calculated as follows:

$$\%R = [(Spike Amount Detected - Sample Value) / Amount Spiked] \times 100$$

8.10.7.3 Matrix Spike Duplicate

The purpose of an MSD is to quantify laboratory precision. An acceptable RPD is less than or equal to 25%. The MSD involves duplication of the MS resulting in two data points from which RPD is calculated as follows:

$$RPD = [(MS - MSD) / (Average of MS and MSD)] \times 100$$

8.10.8 Data Validation

Data validation will use data generated from the analytical laboratory and the field. References that can be used to assist in data validation include USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 1994) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999).

The purpose of data validation is to ensure that data collected are of sufficient quality for inclusion in reports to the RWQCB. In order to serve this purpose, the following information must be available in order to evaluate data validity:

1. Date of sample collection – required to uniquely identify sample and holding time.
2. Location of samples – required to identify sample.
3. Laboratory QA/QC procedures – required to assess analytical accuracy, precision, and sample integrity. A laboratory QA/QC sample set consists of a MS, a MSD, and a MB. A laboratory QA/QC sample set will be analyzed by the laboratory for each field sample batch. Sufficient sample volume and number will be supplied to the laboratory in order to prepare and evaluate the laboratory QA/QC sample set.
4. Analytical methods – required to assess appropriateness and acceptability of analytical method used.
5. Detection limits – required to assess lower limit of parameter identification.
6. Holding times, preservation, and dates of extraction and analysis – required to assess if a sample was extracted and analyzed within the specified time limits and if a sample was stored at the appropriate temperature.
7. Field QA/QC procedures – required to assess field precision and sample integrity. A field QA/QC sample set consists of FB and FD samples. A field QA/QC sample set will be analyzed by the laboratory for one sampling event per year. Sufficient sample volume and number will be collected in the field and supplied to each laboratory in order to prepare and evaluate the field QA/QC sample set.

8.10.9 Data Qualification

Data collected for compliance with the Permit will be qualified through the Analytical Lab Validation process described in Element 8.10.7. This process will ensure all data has been thoroughly reviewed and qualified as valid. During the data validation process, data qualifiers will be used to classify sample data. The following qualifiers will be used:

A - Acceptable. The data have satisfied each of the requirements and are quantitatively acceptable (i.e., valid) and will be used in reports.

R - Reject. Data not valid. This qualifier will be used for samples that cannot be uniquely identified by date of collection or sample location or that fail holding time or , detection limit requirements. Invalid data will not be presented in reports submitted to the RWQCB.

8.10.10 Corrective Action

If previously described criteria for valid data are not met, then corrective action as follows will be taken:

1. The laboratory will be asked to check their QA/QC data and calculations associated with the sample in question. If the error is not found and resolved, then:
 - a. The extracts or the actual samples, which will be saved until the data are validated, will be reanalyzed by the laboratory if they are within holding time limitations. These new results will be compared with the previous results. If the error is not found and resolved, then:
 - b. If field analytical equipment is used, then calibration records will be reviewed. If the error is not found, then:
 - c. The sampling procedure and sample preparation will be re-checked and verified. If the procedures appear to be in order and the error is not resolved, then:
 - d. The data will be deemed invalid and not used.
2. Upon discovery of the source of an error, every attempt will be made to address the cause of the error and remedy the problem.

8.10.11 Data Reporting

The results of sampling and analysis will be summarized in the Annual Report. The data will be tabulated so that they are readily discernible.

Element 9: Procedures to Prevent Sample Contamination

Sample collection will not be done in close proximity to application equipment and preferably upwind. Sampling will be done in a manner that prevents contact with algaecide or aquatic herbicide application equipment, product or service containers or the application staff's personal protective equipment (PPE). Care will be taken by samplers to minimize contact with any treated water or vegetation.

In the event that sampling equipment will be used in more than one location, the equipment will be thoroughly cleaned with a non-phosphate cleaner, triple-rinsed uncontaminated water, and then rinsed once with the water being sampled prior to its first use at a new sample collection location, as described in Element 8.8.4. Gloves will be changed between sites.

Element 10: Description of BMPs

The County employs the following BMPs to ensure the safe, efficient and efficacious use of algaecides and/or aquatic herbicides.

10.1 Measures to Prevent Spills and Spill Containment in the Event of a Spill

Applicators take care when mixing and loading algaecides and aquatic herbicides and adjuvants. All label language and DPR regulations are followed to ensure safe handling and loading of algaecides and aquatic herbicides. Application equipment is regularly checked and maintained to identify and minimize the likelihood of leaks developing or failure that would lead to a spill. If possible, algaecides and aquatic herbicides will be mixed and loaded at the County's maintenance yard. Alternatively, if a tank must be mixed and loaded in the field, County staff will select locations where the ground is flat or sloping away from the County's aquatic sites to minimize or eliminate the impact of any spills on County waterbodies.

If algaecides or aquatic herbicides are spilled, they will be prevented from entering any water bodies to the extent practicable. County staff is trained to contain any spilled material and are familiar with the use of absorbent materials such as kitty litter, "pigs" and "pillows". Additionally, County vehicles are equipped with shovels and other hand tools that can be used to create a barrier to materials entering surface waterbodies or otherwise stop the spread of the spill. Spills will be cleaned up according to label instructions, and all equipment used to remove spills will be properly contained and disposed of or decontaminated, as appropriate. Applicators will report spills as required by County policy and in a manner consistent with local, state and federal requirements.

10.2 Measures to Ensure Appropriate Use Rate

The following BMPs help ensure the appropriate algaecide and aquatic herbicide application rate is used.

10.2.1 Site Scouting

Prior to treatment, the County's PCA and/or qualified staff scout sites to evaluate the extent to which acceptable algae or aquatic weed thresholds have been exceeded. Thresholds are based on conveyance system capacity, flow maintenance, and ability to deliver irrigation water.

If a location is deemed to have exceeded a threshold or given algae or aquatic weed population is anticipated to exceed a threshold based on site and weather conditions, historic aquatic weed growth, or other information, an algaecide or aquatic herbicide application is considered. If the application can be made without negatively impacting the water quality, then an application is made.

10.2.2 Written Recommendations Prepared by PCA

Prior to application, a PCA licensed by DPR and/or qualified County staff scout the area(s) to be treated, makes a positive identification of pest(s) present, checks applicable product label(s) for control efficacy, and in collaboration with County staff, the PCA prepares a written recommendation, including rates of application, and any warnings or conditions that limit the application so that non-target flora and fauna are not adversely impacted. Licensed PCAs must complete 40 hours of continuing education every 2 years to stay licensed, and therefore are up-to-date on the latest techniques for pest control.

10.2.3 Applications Made According to Label

All algaecide and aquatic herbicide applications are made according to the product label in accordance with regulations of the U.S. EPA, CalEPA, California Occupational Safety and Health Administration (OSHA), DPR, and the local Agricultural Commissioner. The County's PCA and DPR-licensed Qualified Applicator Certificate (QAC) or Qualified Applicator License (QAL) holders regularly monitor updates and amendments to the label so that applications are in accordance with label directions. Licensed QALs and QACs must complete 20 hours of continuing education every 2 years to stay licensed, and therefore are up-to-date on the latest techniques for pest control.

10.2.4 Applications Made by Qualified Personnel

As appropriate, consistent with applicable regulations, the County will utilize QALs, QACs or County staff under the supervision of QALs or QACs to make applications or supervise applications recommended by the PCA. These staff have knowledge of proper equipment loading, nozzle selection, calibration, and operation so that spills are minimized, precise applications are made consistent with the label, and only target vegetation are treated. Qualified personnel are familiar with spray-to-wet and broadcast methods and calibrate the application equipment on an as-needed basis.

10.3 The Discharger's plan in educating its staff and herbicide applicators on how to avoid any potential adverse effects from the herbicide applications

See information above on the continuing education requirements of application County staff responsible for selection and application of algaecides and aquatic herbicides. During annual safety training, qualified applicators must review and understand relevant use restrictions and/or guidance provided in the product label(s) and written recommendation. Examples of actions taken by applicators and PCAs to reduce potential adverse effects are implementing minimum reapplication intervals, not exceeding maximum rates per application and per year, and timing the application when the plants are most susceptible to the material to be applied.

10.4 Application Coordination to Minimize Impact of Application on Water Users

As required by the algaecide and aquatic herbicide label, water users potentially affected by any water use restrictions will be notified prior to an application being made. As necessary, gates, weirs, etc. will be closed to prevent or minimize the discharge of residual algaecide or aquatic herbicides.

10.5 Description of Measures to Prevent Fish Kills

It is important to acknowledge that the use of aquatic herbicides and algaecides, even when used according to label instructions, may result in unavoidable fish kills. Nonetheless, measures will be taken to reduce the likelihood of fish kills as described below. Generally speaking, the concentration of residual aquatic herbicides and algaecides (i.e., the concentration of the aquatic herbicide or algaecide present after the treatment is complete) is not sufficiently high to result in fish kills due to acute toxicity from the material. Decay of treated plant or algal cells may create an oxygen demand in the water system and lack of dissolved oxygen (DO) can cause distress or death of fish and other aquatic receptors.

10.5.1 Applications Made According to Label

All aquatic herbicide applications are made according to the product label in accordance with regulations of the U.S. EPA, CalEPA, DPR, Cal OSHA and the local Agricultural Commissioner. Precautions on the product label to prevent fish kills will be followed. For example, limitations on retreatment interval or the water volume treated will be followed to prevent dead algae or aquatic weeds from accumulating and then decaying and subsequently depressing the DO level. Depressed DO may adversely impact fish populations.

10.5.2 Written Recommendations Prepared by PCA

Prior to application, a PCA licensed by DPR and/or County staff scouts the area to be treated, makes a positive identification of pest(s) present, checks applicable product label(s) for control efficacy, and in collaboration with County staff, the PCA prepares a written recommendation, including rates of application, and any warnings or conditions that limit the application so that fish are not adversely impacted.

10.5.3 Applications Made by Qualified Personnel

As appropriate, consistent with applicable regulations, the County will utilize QACs, QALs, or County staff under the supervision of QALs or QACs to make applications or supervise applications recommended by the PCA. These applicators have knowledge of proper equipment loading, nozzle selection, calibration, and operation so that spills are minimized, precise application rates are made according to the label, and only target algae or vegetation are treated. Calibration ensures that the correct quantity and rate of herbicide is applied.

Element 11: Examination of Possible Alternatives

11.1 Evaluation of Other Management Options

Treatment of algae and aquatic weeds is determined by the application IPM. For example, if a population of aquatic weeds equals or exceeds a threshold, a management practice is implemented to reduce the population below the threshold. Thresholds are met when aquatic weeds or algae cause problems for the County's operations or reduce the ability of the County to efficiently convey stormwater and irrigation return flows through the drainage system toward the pumps that discharge to receiving waters. The County commonly experiences issues with flow restriction due to presence of unmanaged aquatic

vegetation. When flow is obstructed at critical infrastructure locations such as culverts or bridge crossings, the threat of damage to property or people increases. It is the County's responsibility to implement management practices to minimize this threat and allow for unencumbered flows of stormwater or ag drainage.

11.1.1 No Action

As feasible, this technique is used. For example, consistent with the IPM approach used by the County, a threshold is typically reached prior to treatment. Prior to reaching a threshold, no control action is implemented.

11.1.2 Prevention

Native Species Establishment

After the removal of emergent non-native invasive species, the introduction and re-establishment of native species has been successful along the banks or margins of streams and rivers. This technique provides competition for non-desirable species, creates habitat, and may reduce the long-term need for emergent aquatic weed abatement. Limitations to this approach include availability of suitable native species, availability of labor to install and maintain the native plants until the stand is established. Plant characteristics such as growth patterns and the potential to invade areas where they are not wanted must be considered as well as the timing for introduction of native plants. This technique is expensive, takes many years, may be subject to expensive and time-consuming regulatory agency (i.e., California Department of Fish and Wildlife) approval, and may not be feasible in all areas. Additionally, planting bank and access road vegetation is incompatible with the existing drainage system's operations and maintenance procedures. This option has been considered but cannot be implemented at County drainage facilities because the planted species would likely create similar operational challenges as the undesirable species.

Habitat Modification

The County may consider other habitat modifying techniques appropriate for specific problem areas in its drainage conveyance system; for example, dredging. In areas where sedimentation has significantly impacted the capacity of the channel, dredging can increase the conveyance capacity, provide immediate relief from flow obstruction, and prevent regrowth of cattails by removing their rhizomes and growing substrate. Another prevention technique that could be implemented by the County just after dredging in targeted areas is the lining of the channel with gunite or concrete. Example areas where this could be beneficial are where vegetation creates recurrent issues with culvert obstruction or along bends in the channel where sloughs have historically occurred. Periodic removal of accumulated sediment from the liner would prevent future growth of cattails or other aquatic vegetation by removing their suitable habitat and growing substrate.

11.1.3 Mechanical or Physical Methods

Mechanical Removal

Mechanical removal in the County's conveyance system can be accomplished with various methods including the use of hand or motor-driven cutting tools, raking out cattails and their rhizomes using specialized equipment, or removing weeds with an excavator or backhoe.

Generally, these techniques are very labor intensive per unit acre or length of channel treated. Mechanical removal places personnel at risk of general water, slip, trip and fall hazards, poisonous wildlife, potential drowning, risks the spilling of motor oil and fuel into surface waters, and can increase air pollution. The cost per area of mechanical removal is significantly higher than the cost of labor, product and equipment of the application of aquatic herbicides. The increased cost of mechanical aquatic weed abatement does not include the indirect costs of the aforementioned risks (pollution abatement, workman's compensation claims, etc.).

In some instances, the use of mechanical techniques may be necessary when the use of algaecides or aquatic herbicides is not practical, vegetation is not at an appropriate growth stage, or removal must occur immediately, such as during a storm event to prevent imminent flooding. Blankinship & Associates estimates that mechanical removal is 10 to 25 times more expensive than using chemical controls. This additional expense does not include the cost for disposal or for obtaining regulatory permits.

Environmental impacts due to the use of mechanical techniques include the creation of water-borne sediment and turbidity due to people and equipment working in the water. This suspended sediment can adversely affect aquatic species by lowering DO. Disturbing sediment or the banks of County conveyances may cause additional problems including, but not limited to, exposing new areas for aquatic weed establishment, fragmentation and re-establishment of aquatic weeds, siltation and changing the grade of a conveyance. Many weedy species the County may need to control can be spread through fragmentation, and mechanical control has the potential to increase the distribution of the problem vegetation.

If implemented, removed plant material is generally spoiled on-site to reduce transportation costs. However, while drying out, the removed material may impede farming operation on adjacent parcels, and can create nuisance conditions as it dries out.

Mechanical removal has been and will continue to be used by the County, as feasible, to remove vegetation in some areas. While effective in the short-term, regrowth or reemergence of vegetation is common if alternative or additional control techniques are not implemented.

Controlled Burns

This option is most suitable for some types of emergent and terrestrial weeds, and is not appropriate for submerged aquatic vegetation. This option is generally not a suitable alternative control method for target vegetation in the County systems near Yuba City. However, in the areas away from town and where burning is permitted by the local air quality management district this practice could be used to reduce the amount of cattail biomass present in and along conveyances. This could be implemented in drier sections of the systems that are dry out by early fall to allow for cattails to be managed with controlled burns in some years. The timing of a controlled burn to reduce the cattail biomass and allow for stormwater conveyance should be early fall, after harvest of neighboring food crops. Controlled burns may not be feasible in many sections of the channel that continually have standing or flowing water and under many environmental conditions.

Grazing

This option is most suitable for emergent and terrestrial weeds, and is not suitable for submerged aquatic weeds or algae. Impacts to water quality from animal feces, increases in turbidity, nutrients, and bank erosion, and impacts to desirable species make this option unfeasible in some cases. The cost of hiring grazing animals is also generally more costly than chemical control alternatives. The size of the conveyance system, presence of agricultural and vehicle traffic, and lack of fencing limits where grazing

could be implemented within the drainage system without incurring additional costs to install temporary fencing. Goats can be effective at reducing cattail density, especially if the water depth in the channel is less than 1 foot. Grazing will be considered as an alternative control for cattails in select County facilities and may be implemented, if feasible.

Tilling or Discing

This option is not suitable for the control of aquatic or riparian vegetation within County conveyances because tilling or discing exposes erodible soils. The County generally avoids tilling and discing in and around its conveyance system so as not to encourage erosion of banks and sedimentation of the channel. Tilling or discing of roads along the channel interferes with farming on adjacent parcels and reduces the effective use of terrestrial pre-emergent herbicides, if used. The County will consider the use of tilling or discing along its conveyances, as feasible.

11.1.4 Cultural Methods

Cultural methods used to reduce the amount of aquatic herbicides used include modifying the timing of algaecide and aquatic herbicide and non-herbicide controls to prevent plants from reaching reproductive growth stages. Another cultural method is making applications before the density of algae or aquatic vegetation when the plants have less biomass or surface area to avoid needing to apply at higher algaecide or aquatic herbicide application rates and/or prevent staff from needing to make additional applications to maintain algae or aquatic weed populations below threshold levels.

11.1.5 Biological Control Agents

Goats and sheep are often used for grazing in and along riparian areas and levees. As discussed previously, grazing may be suitable for emergent and terrestrial weeds and is not suitable for submerged aquatic weeds or algae. Impacts to water quality from animal feces, increases in turbidity, nutrients, and bank erosion, and impacts to desirable species make this option less suitable in some cases. The cost of hiring grazing animals is also generally more costly than algaecide and aquatic herbicide control. The size of the conveyance system, presence of agricultural and vehicle traffic, and lack of fencing limits where grazing could be implemented within the drainage system without incurring additional costs to install temporary fencing. Grazing will be considered as an alternative control for cattails in County facilities and may be implemented, if feasible.

11.1.6 Algaecides and Aquatic Herbicides

The selection of and decision to use an algaecide or aquatic herbicide is based on the recommendation of a PCA in collaboration with County staff. The PCA considers a variety of control options that may include mechanical, cultural and biological techniques that alone or in combination with chemical controls are the most efficacious and protective of the environment.

Evaluating alternative control techniques is part of the County's IPM approach; therefore an alternative management practice may be selected as part of its program. Alternative control techniques and detailed descriptions are presented in Element 11.1 through 11.5. In general, alternative control techniques are expensive, labor intensive, not as effective, and may cause temporary water quality degradation. The equipment and labor required to perform these techniques is not always readily available as it is required during the summer and fall months that is typically a busy general maintenance period for the County.

This may cause delays in removal or management actions, leading to increased plant growth and subsequently higher overall management burden in terms of staff time and cost.

Algaecide and aquatic herbicide applications may be made prior to threshold exceedance. Based on predicted growth rate and density, weather, water availability, and historical records and experience, aquatic weeds may reasonably be predicted to cause future problems. Accordingly, they may be treated soon after emergence. Even though aquatic weeds may not be an immediate problem at this phase, treating them before they mature reduces the amount of algaecide and aquatic herbicide needed because the younger aquatic weeds are more susceptible and there is less plant mass to target. For example, the County may elect to make an aquatic herbicide application to control large mats of waterprimrose in September upstream of culverts in Gilsizer Slough to allow the plants time to breakdown before the mats could be dislodged and block culverts, thereby reducing the flood risk.

Selection of appropriate algaecides and aquatic herbicides and rate of application is done based on the identification of the algae or aquatic weed, the appearance of that algae or aquatic weed on the product label, and timing application consistent with the plant's growth stage when it is susceptible to control by the selected product.

The rate, quantity, and of algaecide and aquatic herbicide required for an application is determined by a PCA that has followed the label directions in making a recommendation. The rate at which an algaecide and aquatic herbicide is used is highly variable and depends on the type, time of year, location, and density and type of aquatic weeds, active ingredient, water presence, and goal of the application. All these factors are considered by the PCA prior to making a recommendation for an application.

11.2 Using the Least Intrusive Method of Aquatic Herbicide Application

The County uses a variety of application methods including specialized mechanized vehicles (trucks, all-terrain vehicles, trailers, etc.) to make algaecide and aquatic herbicide applications. Combined with the need to hold, safely transport and properly apply algaecides and aquatic herbicides, the County's techniques are the least intrusive as feasibly possible.

Please refer to **Table 1** for application methods.

11.3 Applying a decision matrix concept to the choice of the most appropriate formulation.

As previously stated, a PCA and/or qualified County staff scouts the area to be treated, makes a positive identification of pest(s) present, checks appropriate algaecide and aquatic herbicide product label(s) for control efficacy, and then the PCA prepares a written recommendation. The written recommendation includes rates of application, schedule and any warnings or conditions that limit the application. The PCA may also recommend that an adjuvant be used to enhance the efficacy of the algaecide or aquatic herbicide.

References

EFSA (European Food Safety Authority) 2020. M. Anastassiadou, M. Arena, D. Auteri, A. Brancato, L. Bura, L. Carrasco Cabrera, E. Chaideftou, A. Chiusolo, F. Crivellente, C. De Lentdecker, M. Egsmose, G. Fait, L. Greco, A. Ippolito, F. Istace, S. Jarrah, D. Kardassi, R. Leuschner, A. Lostia, C. Lythgo, O. Magrans, I. Mangas, I. Miron, T. Molnar, L. Padovani, J.M. Parra Morte, R. Pedersen, H. Reich, M. Santos, R. Sharp, C. Szentes, A. Terron, M. Tiramani, B. Vagenende, and L. Villamar-Bouza. 2020. "Updated Peer Review of the Pesticide Risk Assessment of the Active Substance Flumioxazin." *EFSA Journal* 18(9):6246, 22 pp.
<https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2020.6246>

McLaren/Hart Environmental Engineering Corporation. 1995. Use of the Registered Aquatic Herbicide Fluridone (Sonar) and the Use of the Registered Aquatic Herbicide Glyphosate (Rodeo and Accord) in the State of New York - Final Generic Environmental Impact Statement. (prepared for Dow-Elanco and Monsanto).

National Environmental Methods Index (NEMI) 2004. Available: <http://www.nemi.gov>

RWQCB, Central Valley Region (RWQCB). 2018-A. The Water Quality Control Plan (Basin Plan) for the California Regional Water Quality Control Board Central Valley Region. The Sacramento River Basin and the San Joaquin River Basin. Fifth Edition. Revised May 2018.

RWQCB, Central Valley Region (RWQCB). 2018-B. Final California 2018 Integrated Report (303(d) List/305(b) Report), Supporting Information, Regional Board 5 - Central Valley Region, Decision ID 73737 Mustang Creek. Available:
https://www.waterboards.ca.gov/water_issues/programs/tmdl/2018state_ir_reports_final/apx_c_state_factsheets/02070.shtml

SWRCB. 2005. The Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries in California.

SWRCB. 2013. Statewide General National Pollutant Discharge Elimination System (NPDES) Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications, Water Quality Order No. 2013-0002-DWQ. Available:
http://www.waterboards.ca.gov/water_issues/programs/npdes/docs/aquatic/weedcontrol/wp_2013_002dwq.pdf

USEPA. 1980. Guidelines and Specifications for Preparing Quality Assurance Project Plans.

USEPA. 1992. NPDES Storm Water Sampling Guidance Document.

USEPA. 1993-A. Reregistration Eligibility Decision (RED) - Glyphosate; EPA 738-R-93-014. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 1993-B. R.E.D. Facts – Peroxy Compounds; EPA-738-F-93-026. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

USEPA. 1995. Reregistration Eligibility Decision (RED) - Diquat Dibromide; EPA 728-R-95-016. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 1998. Registration Eligibility Decision (RED) - Triclopyr; EPA-738-F-98-007. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review.

USEPA. 2002. Biopesticides Registration Action Document - Sodium Carbonate Peroxyhydrate. U.S. Environmental Protection Agency, Office of Pesticide Programs, Biopesticides and Pollution Prevention Division.

USEPA. 2004. Report for the Food Quality Protection Act (FQPA) Tolerance Reassessment Progress and Risk Management Decision (TRED) for Fluridone. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 2005-A. Reregistration Eligibility Decision (RED) - 2,4-D; EPA 738-R-05-002. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 2005-B. Reregistration Eligibility Decision - Endothall; EPA 738-R-05-008. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 2006. Reregistration Eligibility Decision - Imazapyr. EPA 738-R-06-007. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs.

USEPA. 2007. Ecological Risk Assessment: Section 3, New Uses on Turn and for Control of Aquatic Vegetation in Aquatic Environments, Penoxsulam. U.S. Environmental Protection Agency, Environmental Fate and Effects Division.

USEPA. 2008. Memorandum to James Tompkins, Risk Manager, Herbicide Branch, Registration Division: Ecological risk assessment evaluating Imazamox (PC 129171) for the proposed new use for the control of vegetation in and around aquatic and noncropland sites. From Ibrahim Abdel-Saheb and Michael Davy, Environmental Risk Branch II, Environmental Fate and Effects Division. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances.

USGS. 1995. U.S. Geological Survey, National Field Manual for the Collection of Water Quality Data.